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Abstract

We consider smooth singular Poisson tenso®@3rwhich admit a trivial curl vector field. We
use normal forms for smooth functions R¥ to produce normal forms for such Poisson tensors
around the singular point. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A smooth Poisson structufe } on a manifoldM is a Lie algebra structure aii>* (M)
satisfying the Leibniz identity:

Equivalently, a Poisson structure can be given by a contravariant skew-symmetric 2-tensor
P satisfying [P, P] = 0, where [, ] stands for the Schouten bracket. In local coordinates
P can be written in the form:
ad ad
P= XY — A —.
Z {XZ x]}ax,- 3x]'

1<i<j<n
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Weinstein's splitting theorem (s¢&]) allows us to restrict to a neighbourhood of a zero
rank point, if we are interested in the local structurePof

To a Poisson tensa?P one can associate a family of vector fields, tuel vector fields
of P. One chooses a volume forfa on the manifoldM (which is assumed to be oriented),
takes the exterior derivative of thie — 2)-form i p£2, and then takes the pre-image of this
(n — 1)-form by the inverse map of the contraction wi¢h. This vector field,Kq (P),
is known as thesurl vector field of P with respect t€. In local coordinates and taking
2 =dx1 A--- Adx, we have

n n
0 Py 0
Ko(P) = =
Q( ) Z Zax]' 8xi

i=1 \j=1

By changing the volume form, the curl vector field changes by sum with an Hamiltonian
vector field (se¢3]).

Such vector fields have been recently used in the local study of Poisson structures, mainly
in the case of Poisson structures whose linear approximation at the singular point is trivial
(e.g. quadratic Poisson structures). For example, the classification of quadratic Poisson
structures irR® has been done using an appropriate normal form for one of its curl vector
fields (sed3]). As a corollary of our main result we refine such classification in the case the
curl vector field is trivial, this being precisely the situation not dealt witf8jnSome other
important results have been obtained by assuming some kind of nondegeneracy condition
on a curl vector field (hyperbolicity ifd] and invertibility in[5]).

We will consider Poisson structurgs in R2 whose curl vector field (with respect to
an appropriate volume form) is trivial (and therefore degenerate), and study them around
a singular point. We will call such Poisson structucdssedor locally exact In other
words, we assume that all curl vector fieldsfoire Hamiltonian. To each of these Poisson
tensors we associate a smooth function. We will show that normal forms for these Poisson
tensors can be obtained by putting the associated functions in normal form. We conclude by
exhibiting normal forms (thus obtained) for some families of locally exact Poisson tensors.

2. Locally exact singular Poisson structures
2.1. Definitions and notation

We will assume from now on, without explicitly saying so, that all manifolds, Poisson
tensors, functions and diffeomorphisms are either smooth or analytic. More important, all
Poisson tensors will be assumed to be singular at some point. The normal forms obtained
for such tensors are valid around the singular point.

Definition 1. Let(M, P) be an oriented Poisson manifold of dimensioVe say that’ is
closed(or locally exac} if there is a volume forn¥2 on M such that thgn — 2)-form
ip$2 is closed. Equivalently, the curl vector field & with respect to$2, Ko (P), is
trivial.
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Remark 1. If P is locally exact and2’ = a2 is another volume form o/, then
Ko/ (P) = Xinja), the Hamiltonian vector field of the function Jm|. Conversely, if for
some volume forns2, the vector fieldK ;; (P) is Hamiltonian, therP is locally exact.

2.2. The three-dimensional case

Now consider the case whereis a locally exact Poisson tensor on a manifold of dimen-
sion 3. Then the formp £2 is a closed 1-form. Since we are interested in the local structure
of P around a singular point, we can assume that we are working in a neighbourhood of
the origin inR®. Furthermore such 1-form is locally given by the differential of a function,
so that there exists a functiah defined in a neighbourhood of the origin such that:

ipRy = dv.

We then say thap is locally determined by (with respect ta2), and write:P = Py. By
subtracting® (0), if necessary, we can assume ti#g0) = 0.

Remark 2. The function¥ is a local Casimir function for the Poisson tensor it determines.

In the next step we consider equivalence classes for functioRs.ifwo functionsy

andy’ (both vanishing at = 0) are said to bélocally) equivalenif there exists a local
diffeomorphismgy preserving the origin such tha’ = ¥ o ¢. In the following theorem

we will translate the Poisson-equivalence of locally exact Poisson tensors in terms of the
equivalence of functions which locally determine them.

Theorem 1. If ¥’ = ¥ o ¢ thenPy (with respect ta2) is Poisson-equivalent tBy (with
respect tap*$2).

Proof. Let P denote the Poisson tensBg with respect to a volume forf2. Then
d¥' = p*d¥ = ¢*ip2 = iw*_lp(w*.Q),

whereg_ 1P stands for the pushforward @f by ¢—1. This shows that the tensa@t’ =
@, 1P is locally determined by @’ with respect ta2’ = ¢*2. SinceP’ is, by definition,
Poisson-equivalent t@, the proof is complete. O

Remark 3. The theorem implies that, whenewerandy’ are equivalent functions, there
exists a nowhere vanishing functignsuch thatPy is Poisson-equivalent toPy: (now
with respect to theamevolume form). The problem of removing the functigfrom & Py

is nontrivial, and often not possible.

3. Normal formsfor locally exact Poisson structuresin R3

In this section, we assume that the origin is not only singular but also a zero rank point
for the locally exact Poisson structuPg . In such a case the functiah has a critical point
at the origin.
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3.1. The generic case

By the general singularity theoifi2] we know that generic functions iR® have only
nondegenerate critical points and that their normal forms are:

1. W1 = (X2 + y2 4 29 /2;
2. W = (x2+y2—272)/2;
3. W= (x?2—y2—2%)/2;
4. Wy = —(x?+y? +79)/2.

A corollary of Theorem 1is the following theorem.

Theorem 2. Generically, in the analytic category, locally exact singular Poisson structures
in R3 are Poisson-equivalent to the Lie—Poisson tensor on eith@sor sl(2, R)*.

Proof. As remarked above, the normal forms for generic functionRnare ¥;, i =
1,...,4. If we denote byP; the Poisson tensor locally determined®y(with respect to
the volume form d A dy A dz), then an easy computation shows tiRatis given by

p d a d d 0 0
1—25/\5—}75/\54-365/\8—{
which is just the Lie—Poisson tensor in the duakof3). A linear change of coordinates
shows thatP, is Poisson-equivalent tB;, so both (1) and (4) produce the same equivalence
class for Poisson structures.

Also P; is the Lie—Poisson tensor on the dual of a semisimple Lie algebra. By looking
at its symplectic leaves (which are precisely the level sets of the fungtiprwe can show
that such Lie algebra isl(2, R). One can easily show th@g is Poisson-equivalent t8,
so both (2) and (3) produce the Lie—Poisson structurgl@R)*.

This means that, generically, a locally exact singular Poisson tensor will be Poisson-
equivalent to eitheg P; or & P, (seeRemark 3. Now, in these two situations it is possible
to get rid of the functiorf in the product P;. To do this we just writé = & + O(1) to
produce:

EP =P +0(2),
which is Poisson-equivalent (by a linear change of coordinates) to
P; +0(2).

We now use the result of Coni] to remove the perturbation (@) from P; + O(2).
This is possible in the analytic category since bat8) andsl(2, R) are semisimple Lie
algebras. O

Remark 4. In the smooth situation the results of Conn can not be used to remove the
perturbation @2) from P, 4+ O(2), since the Lie algebral(2, R) is smoothly degenerate
(se€e[7]).
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3.2. The quadratic case

As another corollary offheorem 1we refine the linear classification given by Dufour
and Haraki3] for quadratic Poisson structuresR¥. Equivalence class number 14 (as in
that reference) is

ov oy 4

{xﬂy}:a_zv {X’Z}:_Ev {y’Z}:Ea

where¥ is an homogeneous polynomial of degree 3. We remark that all Poisson tensors in
this class are locally exact Poisson tensors. Using a normal form for such polynomials and
Theorem lwe obtain the following result.

Theorem 3. The (linear) equivalence classes for (singular) locally exact quadratic Poisson
structures inRS are:

v 9 9 0w 9 a v a d
P=a¢——A————A—4+——A—], a€eR,
dz 0x Jdy dy dx dz dx dy 0z

whereW is one of the following

Y = x3, Yy = xzy, llfgc =x3+ XZZ, Yy = xzz + y22,
Ws=x3+yZ,  We=xyz Wr=x>+xyz  Wg=x>+)y3+xyz
Vo =x3+z(2+y%,  ¥E=x3£x0%+9),

wh =x3+y3+ 2+ bxyz (b eR).

Remark 5. In the casel is one ofYy, ... , ¥s, the constané can be removed from the
normal form forP.

Proof. We refer to[6] for the above normal forms (by linear diffeomorphisms) for
homogeneous polynomials of degree 3. Note that in the case of equivalence by linear diffeo-
morphisms, the functiort in Remark 3is constant. This implies that i is
(linearly) equivalent toF’ then Py is Poisson-equivalent taPy: (¢ € R) with respect

to the same volume form. We just have to make sure that the Poisson tensors locally de-
termined by these functions (with respect to the volume f&m= dx A dy A dz) are in
different equivalence classes. The following lemma is a weak version of the converse of
Theorem 1

Lemma 1. Suppose thaP = Py and P’ = Py (with respect to the same volume form
£2) are Poisson-equivalent by a linear isomorphignThen¥ and¥’ are equivalent by a
linear isomorphism

Proof. By hypothesis we have

W' =ipR =i 1,2=¢"p@ 2



32 I. Cruz, H. Mena-Matos/ Journal of Geometry and Physics 43 (2002) 27-32

Now, because 1 is a linear isomorphism we have
(g H*'2 =12

with A £ 0, which shows that:
d¥' = p*(hipR2) = ¢*(d(WW)) = d(AW o ).

Finally, we remark that i and¥’ are two homogeneous polynomials of degree 3 such
that:

U=\ ogp

for some linear isomorphism and nonzero., then¥ and¥’ are in the same (linear)
equivalence class. This completes the proof of the lemma. a

The lemma shows that different (linear) equivalence classes for homogeneous polynomials
of degree 3 produce different (linear) equivalence classes for the Poisson tensors locally
determined by them. The conclusion of the prooffaEorem Follows. a
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